

CarTech[®] 80A Alloy

	Identification	
UNS Number		
• N07080		
DIN Number		
• 2.4952		

	Type Analysis										
Single figures are nominal except where noted.											
Carbon	0.06 %	Manganese	0.35 %								
Sulfur	0.007 %	Silicon	0.35 %								
Chromium	20.00 %	Nickel	Balance								
Copper	0.05 %	Cobalt	1.00 %								
Titanium	2.35 %	Aluminum	1.25 %								
Iron	0.75 %										

General Information

Description

CarTech 80A alloy, a nickel-base, high temperature, alloy containing a high percentage of chromium, is characterized by excellent creep-resisting properties, high oxidation resistance and high resistance to fatigue under very arduous conditions. Aluminum and titanium additions serve as hardening agents.

This alloy is heat treatable using gamma-prime precipitation.

The creep-resisting properties of CarTech 80A alloy are adversely affected by cold working the alloy following heat treatment, the effect being to cause an increase in the rate creep under given conditions. This has led to failure by rupture in a shortened time at a large elongation.

The properties of CarTech 80A alloy may be restored by re-heat treatment.

Corrosion Resistance

Pyromet alloy 80A displays high resistance to oxidation under conditions of repeated heating and cooling. The alloy forms a strong closely adherent oxide which serves to protect it from progressive attack.

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Good	Sulfuric Acid	Good
Phosphoric Acid	Good	Acetic Acid	Good
Sodium Hydroxide	Good	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Humidity	Excellent

	Properties	
Physical Properties		
Specific Gravity	8.25	
Density	0.2950 lb/in ³	

CarTech[®] 80A Alloy

Mean CTE	
70 to 200°F	7.00 x 10 ⋅ in/in/°F
70 to 600°F	7.40 x 10 ⋅ in/in/°F
70 to 1000°F	7.70 x 10 ⋅ in/in/°F
70 to 1400°F	8.20 x 10 ⁻⁶ in/in/°F
70 to 1600°F	8.60 x 10 ₀ in/in/°F

Mean coefficient of thermal expansion

Tempe	erature	Coefficient of Expansion			
70°F to	21°C to	10*/°F	10*/°C		
200	93	7.0	12.6		
600	320	7.4	13.3		
1000	540	7.7	13.9		
1400	760	8.2	14.8		
1600	870	8.6	15.5		

Modulus of Elasticity (E)

Electrical Resistivity (70°F)

30.0 x 10 3 ksi

735.0 ohm-cir-mil/ft

2480 to 2540 °F

Melting Range

Typical Mechanical Properties

Elevated Temperature Stress Rupture Properties—Pyromet Alloy 80A

Te	st	Stress to Produce Rupture in:							
Tempe	rature	100	Hrs.	300	Hrs.	1000 Hrs.			
°F	°C	ksi	MPa	ksi	MPa	ksi	MPa		
1350 1380	730 750	47 40	324 278	33.6	232	31.8 25.8	219 178		
1400	760	37	255	_	_	23	159		

Elevated Temperature Tensile Properties—Pyromet Alloy 80A

Material heat treated 1975°F (1080°C) for 8 hours, air cooled plus 1300°F (700°C) for 16 hours, then air cooled.

	Test Temperature		Ultimate Tensile Strength		0.2% Yield Strength		% Stress	% Elongation	% Reduction
٩F	°C	ksi	MPa	ksi	MPa	ksi	MPa in 4D		of Area
RT	BT	145	1000	90	621	_	_	39	_
1000	540	127	876	77	531	_	-	37	_
1110	600	121	834	_	_	76	524	27	28
1200	650	115	793	80	552	—	_	21	-
1290	700	105	724	_	_	78	538	15	19
1400	760	87	600	73	503	-		17	_
1470	800	72	496	—		58	400	21	19
1600	870	45	310	38	262			30	
1650	900	34	234	—	—	37	255	26	35

Heat Treatment

Solution Treatment

Heat to 1975°F (1080°C), hold at temperature for 8 hours, then air cool.

Age

Reheat to 1300°F (700°C), hold at temperature for 16 hours, then air cool.

Workability

Forging

Pyromet alloy 80A can be forged within the temperature range of 1800/2100°F (980/1150°C).

CarTech® 80A Alloy

Careful control of the forging temperature and frictional heat buildup should be exercised to avoid hot shortness.

Cold shortness can occur with excessive deformation below 1800°F (980°C).

Long soaks are not necessary; an equalized temperature is adequate. Forging furnace fuels should be low in sulfur content as this element can cause catastrophic oxidation.

Forgings may be air or fan cooled. Exercise care in water quenching as quench cracks may occur, especially in large sections.

Pyromet alloy 80A is machinable in all conditions; however, it cannot be machined economically on light machine tools nor machined at operating speeds used on ordinary steel.

The machinability of this alloy is similar to that of an annealed high-speed steel.

In general, material given only an intermediate age at 1525/1575°F (829/857°C) is not as readily machined as material double aged at 1525/1575°F plus 1275/1325°F (829/875°C plus 690/718°C).

Following are typical feeds and speeds for Pyromet alloy 80A.

Turning-Single-Point a	and	Box	Tools
------------------------	-----	-----	-------

		High	-Speed 1	ools	Carbide					
Condition	Depth	Canad	Food	Teel	Speed, fpm		Fred			
Condition	of Cut In.	Speed, Feed, fpm ipr		Tool Material	Brazed	Throw Away	Feed, ipr	Tool Material		
Solution Treated	.100	20	.010		70	80	.010	C-2		
	.025	25	.007	M-42	80	90	.007	C-3		
Aged	.100	20	.010	M-47	65	75	.010	C-2		
	.025	25	.007		75	85	.007	C-3		

Turning-Cut-Off and Form Tools

Condition									
	Speed, fpm	Cut-Off Tool Width, Inches				Tool Material			
		1/16	1/8	1/4	1/2	1	1-1/2	2	
Solution Treated	15	.002	.004	.005	.004	.002	.002	.001	M-42
	45	.003	.0045	.006	.004	.003	.0025	.0015	C-2
Aged	15	.002	.003	.004	.003	.002	.002	.001	M-42
	45	.003	.003	.0045	.003	.0025	.002	.001	C-2

Drilling

Condition		Feed, ipr								
	Speed, fpm	Nominal Hole Diameter, Inches					es		Tool	
	- ipini	1/16	1/8	1/4	1/2	3/4	1	1.1/2	2	Material
Solution Treated	20	_	.002	.003	.003	.004	_	_	-	M.42
Aged	15	_	.002	.003	.003	.004		_	_	- M-42

CarTech® 80A Alloy

Tapping

Condition	Speed, fpm	Tool Material
Solution Treated	10	M-1;M-7;M-10
Aged	7	M-1;M-7;M-10; Nitrided

Reaming

		Carbide Tool								
Condition			Fee	d, Inch	es per	Tool Material	Speed, fpm	Tool Material		
Condition	Speed, fpm		Ream	er Diar	neter,					
		1/8	1/4	1/2	1	1.1/2	2		.p	material
Solution Treated	20	.002	.006	.008	.010	.012	.014		60	
Aged	15	.002	.006	.008	.010	.012	.014	M-42	50	C-2

Die Threading

	Speed, fpm						
Condition			8 to 16 to 15 24		Tool Material		
Annealed	4-6	5-8	6-10	8-12	M-2;M-7;M-10		
Aged	3-4	3-5	4-8	5-10	M-42		

Milling—End Peripheral

	High-Speed Tools						Carbide Tools						
Condition Depth of Cut In.	Depth		Feed-Inches per tooth					Feed-Inches per tooth					
		Speed, Cutter Diameter, Inches			Tool	Speed,	Cutter Diameter, Inches			Tool Material			
		ípm	1/4	1/2	3/4	1.2	Material	fpm	1/4	1/2	3/4	1.2	material
Solution Treated	.050	15	.002	.002	.003	.004	M-42	60	.001	.002	.003	.004	C-2
Aged	1.050	12	.0015	.0015	.002	.003		50	.0015	.0015	.002	.003	02

Broaching

Condition	Speed, fpm	Chip Load, Inches per tooth	Tool Material
Solution Treated	8	.002	M-42
Aged	6	.002	111 42

Additional Machinability Notes

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds and feeds should be increased or decreased in small steps.

Other Information

Applicable Specifications		
• ASME SB637	• ASTM B637	
Forms Manufactured		
• Bar-Rounds	• Billet	
Technical Articles		
A Designer's Manual On Spec	alty Alloys For Critical Automotive Components	

- A Designer's Manual On Specialty Alloys For Critical Automotive Components
- Carpenter 286-LNi Alloy A Lower Cost Option for High Temperature Auto and Truck Fasteners
- Selecting High Temperature Alloys for Fasteners in Automotive Exhaust Systems
- Trends in High Temperature Alloys

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 02/01/1989