

CarTech[®] 22Cr-13Ni-5Mn Stainless

Identification

UNS Number

• S20910

Type Analysis									
Single figures are nominal except w	Single figures are nominal except where noted.								
Carbon (Maximum) 0.06 % Manganese 4.00 to 6.00 %									
Phosphorus (Maximum)	0.040 %	Sulfur (Maximum)	0.030 %						
Silicon (Maximum)	1.00 %	Chromium	20.50 to 23.50 %						
Nickel	11.50 to 13.50 %	Molybdenum	1.50 to 3.00 %						
Columbium/Niobium	0.10 to 0.30 %	Vanadium	0.10 to 0.30 %						
Nitrogen	0.20 to 0.40 %	Iron	Balance						

General Information

Description

CarTech 22CR-13Ni-Mn is a nitrogen-strengthened austenitic stainless steel that provides very good corrosion resistance in combination with high strength. The alloy has better corrosion resistance that CarTech 316 with approximately twice the yield strength. It can be welded, machined and cold worked using the same equipment and methods used for the conventional 300 series stainless steels. It remains nonmagnetic after severe cold work.

The alloy has an excellent combination of strength, ductility, toughness, corrosion resistance and fabricability. It has been used in applications such as valve shafts and taper pins, pumps and fittings for chemical and petrochemical equipment, fasteners, cables, chains, screens, wire cloth, marine hardware, boat shafting, heat exchanger parts, springs and photographic process equipment. Additionally, the alloy has good toughness at cryogenic temperatures and relatively high tensile and yield strengths at moderately high elevated temperatures. These properties further increase the versatility and usefulness of the alloy.

Corrosion Resistance

Carpenter 22Cr-13Ni-5Mn has very good corrosion resistance in many reducing and oxidizing acids, chlorides, and pitting environments. In particular, the alloy provides an excellent level of resistance to pitting and crevice corrosion in sea water; tests have shown it to be completely unaffected after 9 months in quiet sea water. Resistance to intergranular attack in boiling 65% nitric acid and in ferric sulfate-sulfuric acid (ASTM A262, practices B and C) is excellent for both the annealed and sensitized conditions. Like other austenitic stainless steels, Carpenter 22Cr-13Ni-5Mn, under certain conditions, may stress-corrosion crack in hot chloride environments.

The alloy also demonstrates good resistance to sulfide stress cracking at ambient temperatures. It is included in NACE MR-01-75, "Sulfide Stress Corrosion Cracking Resistant Metallic Materials for Oil Field Equipment" at a maximum hardness of Rockwell C 35. Refer to the current document for details on acceptable conditions.

For optimum corrosion resistance, surfaces must be free of scale, lubricants, foreign particles, and coatings applied for drawing and heading. After fabrication of parts, cleaning and/or passivation should be considered.

CarTech® 22Cr-13Ni-5Mn Stainless

Important Note: The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish and dissimilar metal contact.

Nitric Acid	Excellent	Sulfuric Acid	Moderate
Phosphoric Acid	Moderate	Acetic Acid	Good
Sodium Hydroxide	Moderate	Salt Spray (NaCl)	Excellent
Sea Water	Moderate	Sour Oil/Gas	Moderate
Humidity	Excellent		

Typical Corrosion Properties Annealed condition

		Average Corrosion Rate		
Environment	Time of Test	Carpenter 22Cr-13NI-5Mn	Type 316	
10 w/o formic acid-boiling	3 periods-48 hrs. ea.	2.3 mpy	19.3 mpy	
50 w/o acetic acid-boiling	3 periods 48 hrs. ea.		0.1 mpy	
20 w/o HNO ₃ -200 °F (93 °C)	3 periods-48 hrs. ea.		0.8 mpy	
5 w/o H2SO4-176°F (80°C)	3 periods-48 hrs. ea.		33 mpy	
10 w/o H ₂ SO ₄ -176°F (80°C)	3 periods-48 hrs. ea.		112 mpy	
10 w/o FeCl,-R.T.	10 days	0.002 g*	1.1 g*	
5 w/o NaCl spray-95°F (35°C)	200 hours	superior to Type 316**	-	

*total weight loss for specimen 0.095" x 1" x 2" (2.41 mm x 25.4 mm x 50.8 mm) **based on the amount of rusting

	Properties	
Physical Properties		
Specific Gravity	7.88	
Density	0.2850	lb/in ³
Mean Specific Heat (32 to 212°F)	0.1200	Btu/lb/°F
Mean CTE		
70 to 200°F	9.00	x 10 -₀ in/in/°F
70 to 400°F	9.20	x 10 -₀ in/in/°F
70 to 600°F	9.60	x 10 -₀ in/in/°F
70 to 800°F	9.90	x 10 -₀ in/in/°F
70 to 1000°F	10.2	x 10 -₀ in/in/°F
70 to 1200°F	10.5	x 10 -₀ in/in/°F
70 to 1400°F	10.8	x 10 -₀ in/in/°F
70 to 1600°F	11.1	x 10 -₀ in/in/°F

Mean Coefficient of Thermal Expansion

Temp	erature	10.110	
70°F to	21°C to	10-%F	10-*/K
200	93	9.0	16.2
400	204	9.2	16.6
600	316	9.6	17.3
800	427	9.9	17.8
1000	538	10.2	18.4
1200	649	10.5	18.9
1400	760	10.8	19.4
1600	871	11.1	20.0

CarTech® 22Cr-13Ni-5Mn Stainless

Thermal Conductivity	
300°F	108.0 BTU-in/hr/ft²/°F
900°F	141.0 BTU-in/hr/ft²/°F
1500°F	175.0 BTU-in/hr/ft²/°F

Thermal Conductivity

Test Ter	Test Temperature			
°F	°C	Btu-in/ft²+h+°F	W/m•K	
300 900 1500	149 482 816	108 141 175	15.6 20.3 25.2	

Modulus of Elasticity (E)	28.0 x 10 ³ ksi
Electrical Resistivity (70°F)	493.0 ohm-cir-mil/ft

Magnetic Properties

Magnetic Permeability	
Annealed, 200 Oe	1.0040 Mu
Cold Drawn 27% (Wire), 200 Oe	1.0040 Mu
Cold Drawn 75% (Wire), 200 Oe	1.0040 Mu

Typical Mechanical Properties

Typical Cryogenic Mechanical Properties 1" (25.4 mm) round bar, annealed 2050°F (1121°C)

Test Temperature		0.2% Yield Strength		Ultimate Tensile Strength		% Elongation in 2"	 Reduction of Area 	Charpy Impact S	V-Notch Strength
٩F	°C	ksi	MPa	ksi	MPa	(50.8 mm)		ft-lb	J
-100 -320	.73 -196	85 128	586 883	146 226	1007 1558	50 40	65 50	115 50	156 68

Typical Elevated Temperature Tensile Properties 1" (25.4 mm) round bar, annealed 2050°F (1121°C)

Test Temperature			Yield ngth	Ten	nate Isile ngth	% Elongation in 2" (50.8 mm)	% Reduction of Area
۴F	°C	ksi	MPa	ksi	MPa	or 4D	VI Alea
75	24	65	448	120	827	45	65
600	316	46	317	104	717	36	62
800	427	45	310	98	676	30	62
1000	538	41	283	90	621	40	62
1200	649	41	283	82	565	36	62
1350	732	39	269	68	469	38	64
1500	816	34	234	52	359	42	75

Typical Room Temperature Mechanical Properties

1" (25.4 mm) round bar, annealed 2050 °F (1121 °C)

0.2% Yleid Strength				% Elongation in 2" (50.8 mm)	2" (50.8 mm) of Area		Charpy Impact S	
ksi	MPa	ksi	MPa	or 4D	0. 4.00	Hardness	ft-lb	J
65	448	120	827	45	65	96	160	217

Typical Room Temperature Tensile Properties of Cold-Drawn Wire

Wire annealed before cold drawing

Wire Di	ameter	% Cold Work		2% trength	Ten	nate Isile ngth	% Elongation	% Reduction	
in.	mm		ksi	MPa	ksi	MPa	in 2" (50.8 mm)	of Area	
0.250	6.35	0	65	448	120	827	40	65	
0.230	5.84	15	140	965	165	1138	20	55	
0.208	5.28	30	170	1172	190	1310	15	48	
0.185	4.70	45	190	1310	215	1482	10	45	
0.158	4.01	60	215	1482	230	1586	8	40	
0.136	3.45	70	230	1586	245	1689	7	38	

Heat Treatment

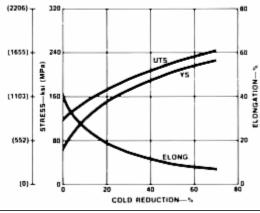
Annealing

Heat to 1950/2050°F (1066/1121°C) and cool rapidly. Thin sections are usually cooled in air and heavy sections in water.

Hardening

Cannot be hardened by heat treatment. Can be hardened only by cold work.

Workability


Hot Working

Carpenter 22CR-13Ni-5Mn can be forged, hot rolled, hot headed and upset. An initial forging temperature of 2100/2200°F (1149/1204°C) is normally used. Preheating to an intermediate temperature is not required. Forgings can be rapidly cooled without danger of cracking. For best corrosion resistance, anneal after forging.

Cold Working

Carpenter 22Cr-13Ni-5Mn can be cold formed by drawing, bending, upsetting and stamping. Because of its higher strength and work-hardening rate, the force required is somewhat greater than for Types 302, 304 and 316. The high work-hardening rate can be advantageous when cold working to increase strength; i.e., high strengths with good ductility can be achieved with less reduction.

The Effect of Cold Work on the Typical Tensile Properties of Wire

Machinability

Carpenter 22Cr-13Ni-5Mn has a machinability rating about 30% of AISI 1212. Slow to moderate speeds, moderate feeds and rigid tools should be considered; tools must be kept sharp. Chips tend to be tough and stringy. Chip curlers or breakers are helpful. Use a sulfurized cutting fluid, preferably of the chlorinated type.

Following are typical feeds and speeds for Carpenter 22Cr-13Ni-5Mn.

Typical Machining Speeds and Feeds – Carpenter 22Cr-13Ni-5Mn Stainless

The speeds and feeds in the following charts are conservative recommendations for initial setup. Higher speeds and feeds may be attainable depending on machining environment.

Turning—Single-Point and Box Tools

Depth	ŀ	ligh Speed Tool	s	Carbide Tools (Inserts)				
ofCut	Tool			Tool	Speed	(fpm)	Feed	
(Inches)	Material	Speed (fpm)	Feed (ipr)	Material	Uncoated	Coated	(ipr)	
.150	M2	55	.015	C6	250	300	.015	
.025	T15	70	.007	C7	300	350	.007	

Turning—Cut-Off and Form Tools

Tool M	laterial							ed (ipr)					
High	Car-	Speed	Cut-O	Cut-Off Tool Width (Inches				Form Tool Width (Inches)					
Speed Tools	bide Tools	(fpm)	1/16	1/8	1/4	1/	2	1	1 ½	2			
T15		40	.001	.001	.0015	.00	15	.001	.0007	.0007			
	C6	140	.004	.0055	.0045	.00)4	.003	.002	.002			

Rough Reaming

High S	peed	Carbide	e Tools		Feed (ip	r) Reamer Diameter (Inches)			
Tool Material	Speed (fpm)	Tool Material	Speed (fpm)	1/8	1/4	1/2	1	1 1⁄2	2
M7	60	C2	80	.003	.005	.008	.012	.015	.018

Drilling

	High Speed Tools									
Tool	Speed		Feed (inches per revolution) Nominal Hole Diameter (inches)							
Material	(fpm)	1/16	1/8	1/4	1/2	3/4	1	1 ½	2	
T15, M42	45-50	.001	.002	.004	.007	.010	.012	.015	.018	

Die Threading

	FPM for High Speed Tools							
Tool Material	7 or less, tpi	8 to 15, tpi	16 to 24, tpi	25 and up, tpi				
T15, M42	4-8	6-10	8-12	10-15				

Milling, End-Peripheral

Depth	High Speed Tools				Carbide Tools							
a Cat	Tool	Speed	Feed	Feed (ip) Cutter Diameter(in)			Taal	Speed	Feed (ipt) Cutte	er Diame	ter(in)
(inches)	Material	(ípm)	1/4				Material	((pm)	1/4	1/2	34	1-2
.050	M2, M7	65	.001	.002	.003	.004	C2	245	.001	.002	.003	.005

Tapping		Broaching		
High Sp	eed Tools		High Speed Tools	
Tool Material	Speed ((pm)	Tool Material	Speed ((pm)	Chip Load (in)
M1, M7, M10	12-25	M2, M7	10	.003

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high-speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

Additional Machinability Notes

When using carbide tools, surface speed feet/minute (SFPM) can be increased between 2 and 3 times over the high speed suggestions. Feeds can be increased between 50 and 100%.

Figures used for all metal removal operations covered are average. On certain work, the nature of the part may require adjustment of speeds and feeds. Each job has to be developed for best production results with optimum tool life. Speeds or feeds should be increased or decreased in small steps.

CarTech® 22Cr-13Ni-5Mn Stainless

Weldability

Carpenter 22Cr-13Ni-5Mn can be satisfactorily welded by the shielded fusion and resistance welding processes. Oxyacetylene welding is not recommended, since carbon pickup in the weld may occur. When a filler metal is required, AWS E/ER209 welding consumables should be considered for welds with strength approaching that of the base metal. If high weld strength is not necessary, then E/ER309 should be considered. Resistance to intergranular corrosion can be restored by a postweld annealing treatment.

Other Information						
Applicable Specifications						
• AMS 5764	• AMS 5861					
• ASTM A240 (Grade XM-19)	• ASTM A276 (Grade XM-19)					
ASTM A412 (Grade XM-19)	• ASTM A479 (Grade XM-19)					
• ASTM A580 (Grade XM-19)	• ASTM F1314					
Forms Manufactured						
• Bar-Rounds	• Billet					
• Strip	• Wire					
Wire-Rod						
Technical Articles						
• Forging Difficult Alloys: How to Get Bett	er Results, Consistently					
Higher Performance Material Solutions	for a Dynamic Spine Market					
• Properties of an Essentially Nickel-Free	Stainless Alloy for Medical Implants					

- Selecting Alloys for Severely Corrosive Environments
- · Selecting Optimal Stainless Steels for Bio-Pharmaceutical Service
- · Selecting Stainless Steels for Valves
- · Specialty Alloys And Titanium Shapes To Consider For Latest Medical Materials Requirements
- · Unique Properties Required of Alloys for the Medical and Dental Products Industry

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 07/17/2003