

CarTech[®] M42[®] High Speed Steel

	Identification	
UNS Number		
• T11342		
AISI Number		
• Type M42		

Type Analysis							
Single figures are nominal except whe	ere noted.						
Carbon	1.08 %	Manganese	0.25 %				
Silicon	0.25 %	Chromium	3.75 %				
Molybdenum	9.50 %	Cobalt	8.00 %				
Vanadium	1.15 %	Tungsten	1.50 %				
Iron	Balance						

General Information

Description

CarTech M42 high speed steel, a molybdenum-type super high speed steel containing high carbon and cobalt contents, is capable of being heat treated to high hardness levels.

This combination of composition and properties allows successful machining of high hardness materials and difficult-to-machine superalloys. Due to the alloy's high hardness, excellent hot hardness and wear resistance are obtained without loss of edge toughness.

Applications

CarTech M42 high speed steel has been used primarily to machine difficult-to-cut or high hardness alloys. Typical tools made from the alloy include:

Broaches Chasers Drills End Mills Counterbores Form Cutters Gear Cutters Hobs Taps Milling Cutters

Heat Treatment

Decarburization

Super Star high speed steel, like all high speed steels, is subject to decarburization in hardening. The use of rectified salt baths or the proper atmosphere control in furnace hardening will impart good results in heat treating.

Normalizing

Normalizing is not recommended.

Annealing

To anneal, the steel should be packed in a container using a neutral packing compound or in a suitable protective atmosphere.

Heat uniformly to 1550/1600°F (843/871°C) ensuring that the entire section is at temperature. Cool slowly in the furnace at a rate not to exceed 40°F (22°C) per hour to 1000°F (538°C), then allow to cool naturally. This should produce a hardness of BHN 255 or less.

Hardening

For best results Super Star high speed steel should be heat treated from properly rectified salt baths or controlled atmosphere furnaces.

Preheat at 1500/1600°F (816/871°C) being sure to heat thoroughly, then transfer to the high heat of 2150/2200°F (1177/1204°C) in salt or 25°F (14°C) higher in atmosphere furnaces.

Quench in salt at 1000/1150°F (538/621°C) until equalized, then cool in air. The steel may also be quenched in warm oil. In either case, cool to 150°F (66°C) maximum before tempering, but do not allow parts to be at room temperature for extended periods before placing in the tempering furnace.

Deformation (Size Change) in Hardening

Super Star high speed steel changes size only slightly on hardening. When hardened from 2175°F (1191°C) in salt, a 1" (25.4 mm) cube will expand about 0.0005" (0.013 mm) and also expand the same amount when tempered at 1000°F (538°C). Average diameter cutters and form tools will open up slightly in the hole and expand slightly on the O.D.

Tempering

The alloy should normally be tempered between 950°F (510°C) and 1100°F (593°C). Tempering temperatures below 1000°F (538°C) usually do not provide adequate relief of hardening stresses and are not generally recommended.

Super Star high speed steel should be given triple temper cycle with a minimum of two hours at temperature each time. The tools must be cooled completely to room temperature following each cycle so that the tempering may be completely effective.

The following table displayed in the hyperlink below shows the results of various tempering temperatures.

Effect of Tempering Temperatures on Hardness - Super Star High Speed Steel Average values

Tempering T	emperatures	Hardness, Rockwell C			
(2 hrs. + 2 h	rs. + 2 hrs.)	Hardening Temperature*			
°F	°C	2175°F (1190°C)	2200°F (1204°C)		
900	482	67/68	66/67		
950	510	69/70	69/70		
1000	538	67/68	68/69		
1050	566	66/67	67/68		
1100	593	64	66/67		

All samples austenitized in salt and salt-quenched.

Workability

Forging

Preheat very slowly to 1500/1600°F (816/871°C) and equalize temperature, then increase furnace temperature rapidly to forging temperature of 1950/2050°F (1066/1121°C).

Do not forge under 1800°F (982°C). Reheat as often as necessary.

Forgings should be cooled slowly; bury in lime, ashes or expanded mica. Always anneal forgings after the slow cool.

Machinability

In the fully annealed condition, Super Star high speed steel is slightly easier to machine than 18-4-1 high speed steel. Comparatively, it can be given a machinability rating of about 45% of a 1% carbon tool steel.

Following are typical feeds and speeds for Super Star high speed steel.

	Hig	h Speed To	ols		Carbid	e Tools	
Depth				Speed, fpm		Fred	Tool
Cut, In.	speed, fpm	ipr	Material	Brazed	Throw Away	ipr	Tool Material
.150 .025	60 65	.015 .007	M-42 M-47	220 250	250 300	.015 .007	C-6 C-7

Turning-Single Point and Box Tools

Turning-Cut-Off and Form Tools

			Feed,	Inches pe	r Rev.			
Speed,	v	Cut-Off Too	ol		Tool			
fpm	v	Vidth, Inch	es		Material			
	1/16	1/8	1/4	1/2	1	1-1/2	2	
55	.001	.001	.0015	.0015	.001	.0007	.0007	M-2
190	.002	.003	.0045	.003	.002	.0015	.0015	C-6

Drilling

			Fe	ed, Inch	es per Re	ev.			Teel
Speed,		Material							
- pin	1/16	1/8	1/4	1/2	3/4	1	1-1/2	2	
35	.001	.002	.003	.005	.007	.008	.011	.013	M-1; M-10

Reaming

			High Spe	ed Tools				Carbide Tools			
		F	eed, Inch	es per Re	v.		Test	0	Tool Material		
Speed, form		Rea	amer Dian	neter, Incl	hes	ar ^{ali} lik afamti	Material	speed, form			
	1/8	1/4	1/2	1	1-1/2	2		ipin material			
30	.003	.005	.008	.012	.015	.018	M-7 100 C-2				

Tapping

Speed, fpm	Tool Material
20	M-1; M-7; M-10

Die Threading

	Speed, fpm								
7 or Less	8 to 15	16 to 24	25 and up, T.P.I.	roor material					
8-12	12-18	18-25	20-30	M-1; M-2; M-7; M-10					

Milling—End Peripheral

		High-Speed Tools				Carbide Tools							
Depth	Creat	Feed-	-Inche	s per '	Tooth	Teel	Canad	Feed-Inches per Tooth		Tool			
or A L.Cut. In., A	Speed,	Cutter	Diam	eter, Ir	ches	Material	tpm	Cutte	er Diam	eter, In	ches	Material	
Additional M	achinabili	y Note	s 1/2	3/4	1-2	anvorad		1/4	1/2	3/4	1-2	hturn of th	a part may require adjustment of
speeds an increased	d feeds. E or decrea	inctar i iach joi seo in i	emova b has small	to be steps	develo	ped for be M-42	est product	e. 01 .0015 ion re: .0015	certain 0025 sults w .0025	ith opt	.005 imum .005	too life. S	peeds and feeds should be

	Other Inform	ation
opeed, ipm	omp soud, mones per room	1 Oot Material
Applicable Specifications	.002	M-42
• ASTM A600	• QQ-T-590	

Sawing—Power Hack Saw

Feed	Sneed	Pitch—Teeth per Inch						
1000	opeeu	IS	ness, Inche	aterial Thick	M			
Inches/Stroke	Strokes/Minute	Over 2	3/4-2	1/4-3/4	Under 1/4			
.006	60	4	6	10	10			

Forms Manufactured

Bar-Rounds

Disclaimer:

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation Copyright © 2020 CRS Holdings Inc. All rights reserved.

Visit us on the web at www.cartech.com

Edition Date: 03/01/1991