

NIMARK® 300

Applicable specifications: AMS 6514, MIL-S-46850

Alternative designations: UNS K93120

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Nickel	18.50 %	Cobalt	8.75 %
Molybdenum	4.90 %	Titanium	0.65 %	Aluminum	0.10 %
Manganese	Max 0.10 %	Silicon	Max 0.10 %	Calcium	Max 0.05 %
Carbon	Max 0.03 %	Zirconium	Max 0.03 %	Phosphorus	Max 0.010%
Sulfur	Max 0.010%	Boron	Max 0.003 %		

Forms manufactured

Bar-Rounds	Rillet	Strin	Weld Wire	Wire	

Description

NiMark 300 is a low-carbon, nickel-cobalt-molybdenum high-temperature alloy capable of attaining yield strengths in excess of 270 ksi (1862 MPa) through simple, low-temperature heat treatment at 900°F (482°C). It exhibits good ductility at high strength levels, excellent notch ductility, and is readily welded.

NiMark 300 is one of a family of "maraging" nickel steels which is martensitic yet ductile in the solution treated condition and attains ultrahigh strength through a single low-temperature aging treatment.

Key Properties:

- High core strength
- High surface fatigue
- High temperature resistance

Markets:

- Aerospace
- Transportation

Applications:

- Landing gear
- Other high-strength structural applications

>NIMARK 300

Corrosion resistance

IMPORTANT NOTE:

The following 4-level rating scale is intended for comparative purposes only. Corrosion testing is recommended; factors which affect corrosion resistance include temperature, concentration, pH, impurities, aeration, velocity, crevices, deposits, metallurgical condition, stress, surface finish, and dissimilar metal contact.

Humidity	Restricted
----------	------------

Physical properties

SPECIFIC GRAVITY	8.00
DENSITY	0.2890 lb/in ³
MEAN CTE (75 TO 900°F)	5.60 x 10 ⁻⁶ in/in/°F
ELECTRICAL RESISTIVITY (70°F)	232.0 ohm-cir-mil/ft

Typical mechanical properties

LONGITUD	LONGITUDINAL CHARPY V-NOTCH IMPACT PROPERTIES					
TEST TEMPERATURE		IMPACT EN	IMPACT ENERGY			
°F	°C	ft-lb	J			
100	38	20	27			
0	-18	18	24			
-100	-73	16	22			
-200	-129	13	18			

TYPICAL ELEVATED TEMPERATURE TENSILE STRENGTH				
TEST TEMPERATU	JRE	TENSILE STRENGTH		
°F	°C	ksi	МРа	
800	427	240	1655	
900	482	210	1448	
1000	538	168	1158	

>NIMARK 300

Typical room temperature mechanical properties

BARS UNDER 4 IN. (102 MM) DIAMETER						
TENSILE STRENGTH		YIELD Strength		REDUCTION OF AREA	ELONGATION	HARDNESS
ksi	MPa	ksi	MPa	%	% IN 4D	ROCKWELL C
294	2027	290	1999	58	11	52

Treated 1500°F (816°C) 30 min., air cooled and aged 900°F (482°C) 3 hours, air cooled.

NOTCHED TENSILE STRENGTH TO UNNOTCHED TENSILE STREGTH		1
FATIGUE LIFE — ENDURANCE	ksi	125
LIMIT	MPa	862
FRACTURE TOUGHNESS (APPROX.)	ksi√in.	70
TRANSVERSE STRENGTH		Similar to longitudinal values while ductility is typically 80% of longitudinal values

SECTION SIZE				DIRECTION	YIELD STREN	GTH	ULTIM/ STREN	ATE TENSILE GTH	ELONGATION	REDUCTION OF AREA	HARDNESS
in²	mm²	OF TEST	ksi	MPa	ksi	MPa	%	%	ROCKWELL C		
10	77/0	Transverse	278	1917	287	1979	7.0	28	53		
12	7742	Longitudinal	281	1937	289	1993	8.0	38	53		
9	F00/	Transverse	277	1910	288	1986	7.0	28	53		
1	5806	Longitudinal	280	1931	289	1993	8.0	39	53		
,	2071	Transverse	278	1917	287	1979	7.0	29	53		
6	3871	Longitudinal	277	1910	287	1979	8.0	39	53		
,	25.01	Transverse	275	1896	280	1931	10.0	56	52		
2581	Longitudinal	285	1965	289	1993	11.0	58	52			

Treated 1500°F (816°C) 30 min., air cooled and aged 900°F (482°C) 3 hours, air cooled.

>NIMARK 300

HOT HARD	HOT HARDNESS					
TEST TEMPERATURE		HARDNESS				
°F	°C	ВНИ				
800	427	495				
900	482	450				
1000	538	400				
1100	593	300				
1200	649	190				
1300	704	_160				

Heat treatment

Annealing	Annealing and solution treating are performed simultaneously by heating to $1500^{\circ}F \pm 50^{\circ}F$ (816°C $\pm 10.1^{\circ}C$) for a minimum of 30 minutes at temperature, followed by air cooling to room temperature.
Age	Usually NiMark 300 is aged at 900°F (482°C) for a minimum of 3 hours followed by air cooling.

Workability

Machinability	NiMark 300 is readily machined in the solution treated (annealed) condition. Limited machining can be performed in the fully treated condition. Annealed hardness is typically 32 Rc.
Weldability	NiMark 300 can be welded using conventional welding methods and electrodes of approximately the same composition as the base material. Preheating is not required.

For additional information, please contact your nearest sales office:

info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.